
Chap. 7
Illumination-based Shading

Ensino de Informática (3326) - 4º ano, 2º semestre
Engenharia Electrotécnica (2287) - 5º ano, 2º semestre

Engenharia Informática (2852) - 4º ano, 2º semestre

Lighting Review

 Lighting Models
 Ambient

− Normals don’t matter

 Lambert/Diffuse
− Angle between surface normal and light

 Phong/Specular
− Surface normal, light, and viewpoint

Applying Illumination

 We now have an direct illumination model for a single point on
a surface

 Assuming that our surface is defined as a mesh of polygonal
facets, which points should we use?
 Computing these models for every point that is displayed is expensive

 Normals may not be explicitly stated for every point

 Keep in mind:
 It’s a fairly expensive calculation

 Several possible answers, each with different implications for the visual
quality of the result

Shading Models

 Several options:
 Flat shading

 Gouraud shading (interpolation)

 Phong shading (interpolation)

 New hardware does per-pixel programmable shading!

Flat (or Constant) Shading

 The simplest approach, flat shading, calculates
illumination at a single point for each polygon.
 OpenGL uses one of the vertices

 The illumination intensity (color) is the same for
all points of each polygon.

 Advantages:
 Fast - one shading value computation per polygon

 Disadvantages:
 Inaccurate

 Artifacts: Discontinuities at polygon boundaries

Is flat shading realistic for faceted
object?

NO!
 For point sources, the direction to light varies across the facet
 For specular reflectance, direction to eye varies across the facet

Flat Shading

 We can refine it a bit by evaluating the
Phong lighting model at each pixel of each
polygon, but the result is still clearly faceted:

 To get smoother-looking surfaces
we use vertex normals at each vertex
 Usually different from facet normal

 Used only for shading

 Think of as a better approximation of the real
surface that the polygons approximate

 Vertex normals may be
 Provided with the model

 Approximated by averaging the normals of the
facets that share the vertex

Gouraud Shading

 It directly illuminates or shades each vertex
by using its location and normal.

 It linearly interpolates the resulting colors
over faces: along bounding edges first, and
then along scanlines in its interior.

 Advantages:
 Fast - incremental calculations when rasterizing
 Much smoother - use one normal per shared

vertex to get continuity between faces

 Disadvantages:
 Still inaccurate. Polygons appear dull and chalky.
 It tends to eliminate the specular component. If

included, it will be averaged over entire polygon.
 Mach banding.

c1

c2

c3

c1 + t1(c2-c1) c1 + t2(c3-c1)

c1 + t1(c2-c1) +
t3(c1 + t2(c3-c1)- c1 + t1(c2-c1))

can’t shade
that effect!

Gouraud Shading:
Mach banding

 Artifact at discontinuities in intensity or
intensity slope.

 The Mach banding describes an effect
where the human mind subconsciously
increase the contrast between two
surfaces with different luminance.

 The difference between two colors is more
pronounced when they are side by side
and the boundary is smooth.

 This emphasizes boundaries between
colors, even if the color difference is small.

 Rough boundaries are “averaged” by our
vision system to give smooth variation

http://www.markschenk.com/various/machband.html

floor appears banded

banded
along
edges

flat shading Gouraud shading

OpenGL shading

 OpenGL defines two particular shading models:

 Controls how colors are assigned to pixels

 Gouraud shading:interpolates between the colors at the vertices (the
default)

glShadeModel(GL_SMOOTH)

 Flat shading: uses a constant color across the polygon

glShadeModel(GL_FLAT)

Phong Shading

 Phong shading is not the same as Phong
lighting, though they are sometimes mixed up
 Phong lighting: the empirical model we’ve been

discussing to calculate illumination at a point on a
surface

 Phong shading: linearly interpolates the surface
normals across the facet, applying the Phong
lighting model at every pixel

 Advantages:
 Usually very smooth-looking results
 High quality, narrow specularities

 Disadvantages:
 But, considerably more expensive
 Still an approximation for most surfaces

Phong Shading

 Linearly interpolate the vertex
normals
 Compute lighting equations at each

pixel

 Can use specular component

 Note that normals are used to
compute diffuse and specular terms

N1

N2

N3

N4

discontinuity in normal’s rate of
change is harder to detect

Itotal = KAIA + Ii

i=1

lights

∑ (KD


N ⋅

Li() + KS


V ⋅

Ri()n)

Shortcomings of Shading
 Polygonal silhouettes remain

 Perspective distortion

 Interpolation dependent on the polygon orientation

 Problems at shared vertices

 Bad vertex averaging

Shortcomings of Shading
 Polygonal silhouettes remain

Gouraud Phong

Shortcomings of Shading
 Perspective distortion

 Note that linear interpolation in screen space does not align with linear
interpolation in world space.

 Break up large polygons with many smaller ones to reduce distortion.

Z – into the scene

image
plane

Shortcomings of Shading
 Interpolation dependent on the polygon orientation

A

D

C

B

Interpolate between
AB and AD

Rotate -90o

and color
same point

Interpolate between
CD and AD

D

C A

B

Shortcomings of Shading
 Problems at shared vertices

 Example aside:
− The vertex B is shared by the two

rectangles on the right, but not by the
one on the left

− The first portion of the scanline is
interpolated between DE and AC

− The second portion of the scanline is
interpolated between BC and GH

− A large discontinuity could arise

B

A

C

E

D

F

H

G

Shortcomings of Shading
 Bad vertex averaging

Shading Models (Direct lighting)
summary

 Flat Shading
 Compute Phong lighting once for entire polygon

 Gouraud Shading
 Compute Phong lighting at the vertices and interpolate lighting values across

polygon

 Phong Shading
 Compute averaged vertex normals

 Interpolate normals across polygon and perform Phong lighting across polygon

Current Generation of Shaders

 Current hardware allows you to break from the standard
illumination model

 Programmable Vertex Shaders allow you to write a small
program that determines how the color of a vertex is computed
 Your program has access to the surface normal and position, plus

anything else you care to give it (like the light)

 You can add, subtract, take dot products, and so on

Current Generation of Shaders

 We have only touched on the complexities of illuminating
surfaces
 The common model is hopelessly inadequate for accurate lighting (but it’s

fast and simple)

 Consider two sub-problems of illumination
 Where does the light go? Light transport

 What happens at surfaces? Reflectance models

 Other algorithms address the transport or the reflectance
problem, or both
 Much later in class, or a separate course

